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1 Abstract
Genetic algorithms are a subclass within artificial intelli-
gence that allows for various problems to be solved. Dating
back to the 60s, genetic algorithms have helped solve many
solutions. The concept behind genetic algorithms referred to
Darwin’s ideas on natural selection and evolution. As time
passed, the applications of genetic algorithms spread into
many different industries. In this research paper, the process
of solving a video game through the use of a genetic algo-
rithm was built. Flappy Bird was a popular mobile game that
was launched in 2013. The goal was to create an agent that
could successfully play the game. The format and methods
for developing a genetic algorithm have been researched,
however, implementing it into an existing code base for a
specific game is a new challenge. By the end, an agent could
be created that had optimized parameters through the vari-
ous processes of a genetic algorithm.

2 Problem Description
Initially, the game of Flappy Bird seems quite an easy tap to
jump and survive, however, the precision and coordination of
jumps are critical to success leaving many players frustrated
and wanting to find a better way to play. The game itself
is a simple 8-bit graphics style in which the agent is a bird
centered horizontally on the screen where the background
moves by with obstacles. In-game the obstacles are as follows
the top and bottom of the screen, which are represented by
the ground and sky. However, the challenging obstacles in
the form of pairs of pipes that are created in even intervals
horizontally with a fixed size gap at different heights on the
screen. The challenge lies in chaining together jumps to not
only pass through the current pipe, while prepping to pass
through the next pair as well.

2.1 Why Flappy Bird?
This would be an interesting project to work on as it would
be a fun way to beat a game that was a large part of society
at one point. Additionally, this app was known for being
difficult to get a high score on, so it would be an engaging task
to create an algorithm that can score well in a traditionally
difficult environment for humans.

2.2 Game Challenges
2.2.1 Game Interface. The original game is amobile game
making sensors and actuators for any agent to play the game
needlessly complicated. The agent would first need a screen

capture of the screen itself to know what is happening, and
even that would still need some vision processing algorithms
on top of it to determine useful data as discussed in the sec-
tion Learning Optimization Parameters. For sensors, a sim-
ulated input would be needed which on mobile devices is
quite difficult with current limitations of apps to simulate
inputs over others. So, the mobile game is a poor choice of
an agent so a Python port of the game in which both sensors
and actuators can be simplified by directly assessing data
assets and inputs to the game make this task feasible.

2.2.2 Dimensionality. However, even given access to the
birds’ exact position and pipe position the agent still needs
many different dimensions of sensor data like height from
the ground, x distance to next pipe, y distance to top pipe, y
distance to bottom pipe, and more. The high dimensionality
of this data may require either some form of dimensionality
reduction or simply more computational power. For example,
if the height from the ground needs to stay at an optimal
height then the agent needs to not only determine which
actuators can achieve that optimum, but must also consider
other parameters as well in the optimization process.

2.2.3 Environment. Given that the game is partially ob-
servable, in that pipes are not all visible to the agent, and
that it has an infinite number of game states makes graph
traversal search algorithms like A* are impractical for this
kind of application. The infinite procedural generation of
pipes and randomness of the game makes the environment
non-deterministic, forcing the agent to be more complex.
Because of this, the agent will need to plan ahead and take
jumps that will not only get through the current pipe, but
future pipes as well requiring the algorithm to track these
features.

2.2.4 General AI Challenges. However, with any prob-
lem, especially a genetic AI application, overfitting must be
avoided to make the agent as responsive as possible. If over-
fitting occurs the overhead of the algorithm could cause the
agent to perform poorly by having input latency issues.

2.3 Software
The software that we will be using for this project includes
an open-source repository that already has a working Flappy
Bird game [1]. This repository builds the game in Python
using the pygame library. For coding a genetic algorithm,
we will also be using native Python.
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2.4 Preliminary Work
We haven’t done any preliminary work on this project our-
selves. As mentioned above, we will be using an open-source
repository that already has a working Flappy Bird game
allowing us to focus on the genetic algorithm.

3 Background
3.1 Background Introduction
Genetic algorithms have had a large impact on the way algo-
rithms have been developed. The origin of these algorithms
came from the ideas of natural selection in genetics. Hence,
the name genetic algorithms. The process for creating a ge-
netic algorithm at its core aligns with the idea of the fittest
member of a population surviving and being able to repro-
duce. This leads to a well-performing model after many gen-
erations. As the use of this algorithm came to be, it expanded
into many different industry sectors which are discussed
later in the paper.

3.2 History Behind Genetic Algorithms
One of the first instances of this was in cybernetics move-
ment applications in the early 60s [3]. The idea behind the
algorithms used was based on natural phenomena and was
used because these systems were mostly emulating "natural
systems." At the time of their inception, Genetic Algorithms
weren’t particularly successful or used until other technolo-
gies developed like neural networks. The creation of these
algorithms and methodologies are often very intertwined
with one another even if alone, they often perform relatively
different tasks

3.3 Early Genetic Algorithm Uses
Some early usages of genetic algorithms that are still com-
mon today are in classifier systems. The classification algo-
rithms take sets of known samples and "learn" their attributes
through given classifications generating probabilistic models.
The models can then be used to classify previously unseen
samples by finding similarities in subsections of the total
data sample. These new samples can also be used to improve
the accuracy of the algorithm over time.

3.4 Naming Rationale
The terminology itself comes from organisms and different
evolutionary theories in which multiple "parents" produce
"children" with a combination of characteristics. The naming
of "Genetic Algorithms" may be a bit of a misnomer because
often many "genetic" systems that fall under that heading
have parallelism, which contrasts typical natural evolution-
ary systems where the old must die and the new ones are
born [3]. The slow speeds of natural evolution are also very
common criticisms for the naming scheme, but when new
populations and generations can be created many times per
second and larger amounts of "mutation" can happen per

generation, these concerns are quickly ignored. So, overall
the genetic algorithm may not be the most precise name, but
for the sake of simplicity, we use it anyway.

3.5 Current Applications
Genetic algorithms have been implemented to solve challeng-
ing problems. These areas of applications include categories
within operation management, multimedia, and wireless net-
working [5]. The genetic algorithms provide a solution that
is either effective or uses fewer resources than other more
complex algorithms.

3.6 Operation Management
According to Katochl, facilities that were clustered used mu-
tation and heuristic operators for a genetic algorithm were
7.2% less than other algorithms [5]. Additionally, there have
been genetic algorithms implemented that can help man-
age inventory control. The algorithm also helped provide
information on how many warehouses were needed to store
the data. Finally, genetic algorithms have been implemented
in financial trading institutions to help make predictions.
Something that is important to note is that these genetic
algorithms have also been combined with other models like
neural networks.

3.7 Medical Technologies
Genetic algorithms have had applications in both image and
video processing [5]. It requires a lot of computational power
to partition an image yet genetic algorithms do a better job as
their search capabilities are effective. There are many actions
that genetic algorithms can take on an image or video. Some
of these include; improving the contrast, merging the noise
and color attributes, and magnifying a picture. Additionally,
genetic algorithms have been known to be able to help with
detection in CT scans in the medical field [4].

3.8 Other Applications
It has been implemented in a way where the genetic algo-
rithm is combined with a neural network to help identify
brain tumors [4]. Additionally, genetic algorithms have been
used in agriculture for finding the capacity of water in the
soil, using remote sensors. A large part of media is games.
Genetic algorithms have been able to solve many different
games. One of these games was Gomoku [13]. It performed
better than other tree-based algorithms.

3.9 Wireless Networking
Genetic algorithms were used to help allocate bandwidth for
various channels. Additionally, they were used in wireless
networking to help find wireless nodes (localization). The
algorithm used simulated annealing along with a genetic
algorithm to find the position [14]. It was interesting that
the average calculation time was 50% faster when simulated
annealing was added to the genetic algorithm. As stated
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in the journal, the model was built using the various steps
defined in this paper’s Creating a Genetic Algorithm section.

3.10 Creating a Genetic Algorithm
The process of creating a genetic algorithm through various
steps [11]. The first step involves creating an initial popula-
tion. Then evaluating the fitness of each population member.
This step can be done through something like a cost function.
After evaluation, you need to start natural selection. This
means only letting the best members of the population live.
The next steps involve mating. First, the members need to be
paired for mating. Then an offspring needs to be generated
from the parents. Additionally, the offspring can be selected
for mutation. This process can be continued or ended de-
pending on how the population is performing. The steps for
a genetic algorithm are better described below.

3.11 Creating a Population
When creating a population, there are many different meth-
ods but it usually involves creating many samples through
a random function. These can be stored in an array or even
a matrix. These samples should have enough variation that
they are able to evolve throughout the run-time of the algo-
rithm.

3.12 Evaluating each Member
The evaluation of each member is the key determinant of
what is good vs what is bad. In order to effectively evaluate
a member of a population there needs to be a cost function.
This cost function will return the fitness level of a member.
An example of a cost function could be,

cost(𝑥) =
𝑁∑︁
𝑖=1

𝑥2𝑖

[11]. This would take the square of all the attributes in a
member and sum them together. However, there are many
different types of cost functions and certain functions will
be better for specific data sets.

3.13 Natural Selection
The process of natural selection involves selecting a𝑘 amount
of members from a population that have the lowest cost.
This idea states back to Darwin’s Ideas on natural selection
where only the fittest members of a population will be able
to survive. Eventually, the process of only keeping the best
members creates a population that performs well.

3.14 Mating
Mating is the idea of pairing members of the population
together for breeding. The fittest members of the population
are the ones that are most likely going to be chosen for repro-
duction. To simulate this process, a typical way is through a
roulette wheel [11]. This involves giving the fittest members

a higher probability of being selected for mating than weaker
members. The percentages that describe a member’s chance
of getting chosen will need to be tinkered with. However,
once the probability is set, it doesn’t need to be changed as
the number of members that survive natural selection will
be constant throughout the evolution of the population.

3.15 Create offspring
When creating an offspring, it should be a combination of
both the father and mother. There are many different ways to
combine attributes from both parents. However, one possible
way is through the use of bit masks. This process can be done
by creating a random mask of both the mother and father.
These two masks can be applied in various ways to create
many offspring with parts from both the mother and father.
The most common practice for creating an offspring involves
the process called crossover. This allows the parents to swap
bits with each other at a point or multiple points in the bit
string rather than a [7]. This gives the offspring a chance
to inherit genes from both parents. Notice, that there are
many different parameters that need to be looked at. These
include the rate at which crossovers are implemented, and
how many crossovers are used in the process of creating an
offspring [7].

3.16 Mutate offspring
In genetics, mutations can arise in creating offspring. This
change in the DNA is not from either parent but rather a
random change in DNA. Mutations from genetics can also be
applied to genetic algorithms. This process allows random
change to the offspring. A common practice for this method
is called bit-flip mutation [7]. It involves switching a bit value
from 0 to 1 or 1 to 0. When it is not bits, it can simply be
switching whatever is representing a gene into a random or
opposite value. Additionally, mutations should be occurring
at a lower rate than crossovers. If this is not the case, then
it becomes more of a random evolution rather than genes
being passed down.

4 Genetic Algorithms in Games
Genetic algorithms can be a great way to find an optimal
solution for a simple game. There are many different things
to consider when developing an algorithm to help solve a
game. For one, the parameters of one game will be much
different than another game. This means that an effective
genetic algorithm that works with Gomaku may not work
with some things like Chess. Another application that genetic
algorithms have been used for is scene generation [8]. This
is a key part of video games to simulate endless levels.

4.1 Scene Generation
In order to generate a scene in a video game, there are many
considerations to be taken. The scene may need to include

3



a set of walls, enemies, collectibles, a starting point, and
an ending point [8]. A key realization is that these scene
parameters can be represented as a matrix. The digits in an
element in the matrix can represent one of the parameters.
Depending on the game it can be a 2D or 3D matrix to define
the scene. Once the cost function has been effectively set
up then the algorithm can start to optimize the generated
scenes. Once working properly, it can give the illusion of an
endless world if scenes can be infinitely generated.

4.2 Card Battle
Genetic algorithms can also be used to effectively play as an
agent in games that are referred to as card battle [9]. The dif-
ference between a card game and a card battle resides in the
number of attributes that are being analyzed by an agent. In
a card game, only one attribute is analyzed while a card bat-
tle has many attributes being analyzed. Optimal algorithms
have already been developed for card games, however, these
same algorithms wouldn’t be considered optimal when there
is more than one attribute. A few of the considerations that
go into a Card Battle include the cards in your hand, the
position of the cards in your hand, the cards in the enemy’s
hand, and the position of the cards in the enemy’s hand [9].
All of these attributes need to add to the cost function so
they all can be evaluated in some way. By the end, the ge-
netic algorithm will help effectively play the Card Battle in
a better way than just looking at one attribute.

4.3 Case Injected - Genetic Algorithms
Case-Based members of a population have predetermined
moves and have performed well in previous games or popu-
lations [6]. This allows for an improved genetic algorithm in
both quality and time. This improvement comes from occa-
sionally adding good members that have good performance
in other problems. The idea behind case injecting is that it
can combine old game scenarios into a new method to make
it perform better. In one case, implementing a case-injected
genetic algorithm allowed the agent to perform with 5% of
the optimal target 95% of the time [6]. Keeping track of the
cases that perform well can be done at the natural selection
step during the evaluation of the cost function. Based on
the desired goal, the number of cases that can be kept for
injection can be varied. However, in the example used for
a real-strategy game, 15% of the top cases were used for in-
jection. Though one may find the natural selection step and
the idea of keeping the top 15% cases very similar, however,
there is a key distinction. This distinction lies in the idea that
natural selection only keeps a certain amount of members
in the current generation population. Yet, the cases used for
injection are the best members from all generations of the
population.

4.4 The Endless Runner Genre
Since Flappy Bird is in the Arcade Genre and more specif-
ically the modern Endless Runner subgenre. These games
have very limited environments that are infinitely gener-
ated in a pseudorandom way in each play-through [10]. The
levels often times increasing in difficulty over time by speed-
ing up the camera requiring more precise user input over
time. These games have become extremely popular as mo-
bile games in the past decade. They all have a very simple
goal survive as long as possible by running, flying, driving,
or whatever medium the game has chosen. The simplistic
platforms often only have a few potential user inputs like
turning by swiping or simply tapping the screen to jump,
making the timing of user inputs much more critical than
any specific inputs. This means agents have very few poten-
tial actions as well. Overall with few sensors and actuators,
the internal learning model is reasonable in complexity to
be used in online environments and perform in real-time.

4.5 CoinTex
CoinTex is an arcade-style game in which agents need to
collect coins while avoiding obstacles such as fire [2]. The
agents than can then collect data on where coins and ob-
stacles may be in the environment. The genetic algorithms
fitness function simply rewards an agent moving near coins
and punishes movements that collide with fire or other ob-
stacles. The agent then takes a given weight, which to start
is randomly generated and applies its given precepts to gen-
erate an action. The agent then outputs its fitness score after
this move is taken. Many agents are run in parallel until
they reach a goal state, either collision with an obstacle or
having collected all coins. The best are chosen by taking the
summation of fitness function after all steps to create a new
"generation" of agents to then repeat this process, ideally
with higher fitness scores over time. After a given number of
iterations, the program can terminate and output its "ideal"
weights to play the game. The ideal weights are the "genes"
or instructions that the agent should use to make decisions

4.6 Neuroevolution of Augmenting Topologies
(NEAT)

The NEAT algorithm is a specific variant of a genetic al-
gorithm implantation, in the most basic sense, utilizing a
dynamic neural network by changing the internal structure
of the graph by making more or fewer connections based on
the complexity of the environment, hence the augmented
topology [12]. This approach, compared to traditional genetic
algorithms using static neural networks, is more likely to
find efficient and robust solutions. The reasoning is because
often times agents have extremely high dimensional input
through precepts and many can be quite inconsequential in
action decisions, so by adding layers to the neural network
dynamically the algorithm can adapt to high dimensional
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data quickly, making new generations of improvement rates
higher and requiring fewer total iterations. The allowance
for more layers also makes it so that solutions can become
more complex given enough iterations and optimization.
The increasing complexity over time without just needlessly
starting with more layers than needed is a very attractive
behavior preventing overfitting or degraded performance,
by having an overly complex model. The NEAT algorithm
has allowed agents to become increasingly complex given
enough time

4.7 Alternative Methods for Offspring Creation
As discussed in the section Creating a Genetic Algorithm,
crossover and mutation are typical methods for producing an
offspring. However, there are other methods that can also be
implemented. One of these methods is called inversion. This
is the idea of reversing a part of a set of bits in the original
string. This is shown below.

1010010101 → 1010101001

Similar to a mutation in the sense that it can be applied
randomly. This has the ability to add a different form of
randomization to the offspring.

5 Approach
Creating a genetic algorithm varies based on the problems
that are being solved. In this project, the goal was to get
an agent to play Flappy Bird able to achieve a reasonable
score. In order to get an agent to perform well, it needed
to be optimized through many generations. The first thing
was to figure out what a high-performing agent needed to
be sensing when playing the game.

5.1 Learning Optimization Parameters
When playing the game, the agent must make it through
the two pipes in order to increase the agent’s score. This led
to the two main things that needed to be observed; when
to start tracking the next pipe and how far above the lower
pipe to jump. This is shown in Figure 1. Once these different
parameters where optimized through the genetic algorithm,
the agent will have enough knowledge to navigate its way
through the current and upcoming pipes with ease. These
two parameters seemed to be the most effective given the
amount of computing resources need to make the game
run with a large number of agents. These two parameters
would allow the game to run smoothly as it didn’t have to
calculate a large dimension of parameters for a large number
of agents simultaneously. Naturally, the parameters will start
off as random but will slowly lean towards an effective set
of parameters as the weaker agents aren’t able to pass their
genes onto the next generation.

Figure 1. The red arrow suggests the optimization parameter
for the height to flap above the lower pipe, and the blue
arrow suggests the optimization parameter for when to start
tracking the next pipe.

5.2 Developing a Population
The next part of the approach was to build a population that
could run multiple agents at the same time. This follows the
idea that a genetic algorithm has a population with multiple
members all fighting to pass their genes onto the next gen-
eration of offspring. Originally, this game is only made for
one agent at a time. This meant that the source code needed
to be modified to account for multiple agents running si-
multaneously. This meant that there needed to be variables
that track multiple birds’ velocity, position, and score. These
things all needed to be updated effectively so that the game
would be able to run smoothly. After the changes to the
game’s source code took place, a population with varying
sizes could be run seamlessly. A population size of 20 seemed
like a good number to run the project with as it was enough
to get significant changes in the agent’s parameters between
generations, yet it wasn’t too many agents that the game
couldn’t run smoothly. With the population size set to 20
agents, the next part of building the genetic algorithm was
to make sure that the agents’ fitness was properly evaluated.

5.3 Evaluating Fitness
Evaluating an agent’s fitness can be a hard process in some
scenarios. However, for score-based video games, it is not
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difficult. After each generation, an agent’s fitness could be
determined by looking at the agent’s score which in Flappy
Bird is a direct representation of how many pipes the bird
made it through. Additionally, the agent’s fitness is used in
the selection process of natural selection.

5.4 Applying Natural Selection
Knowing the fitness of each of the 20 different agents, the nat-
ural selection process can be used to pass thewell-performing
agent’s genes onto the next generation. The natural selection
process used in this genetic algorithm involved looking at
the top 5 agents and using their genes to be passed on to the
next generation. This process simulated Darwin’s ideas that
only the fittest members of a population are able to survive
to pass their genetics onward.

5.5 Mating and Creating Offspring
Mating can be a complicated process for genetic algorithms
and can vary a lot between different problems. Some common
procedures for building an offspring from two parents can in-
clude some process of crossover or mutation with bit-strings.
However, the parameters that the agents in Flappy Bird game
had were not able to be mutated or put through the process
of crossover. However, it is still possible to randomly select
new trait values with influence from both parents. In order to
create a new offspring, two of the five parents from natural
selection are randomly paired together. The next step was
to create the offspring using the two parents. The process
of creating offspring parameter values involved selecting a
random value from a Gaussian distribution with the mean
being the mean of the parents to values and the standard
deviation being the absolute value of parent1’s value minus
parent2’s value divided by two. This is shown in Equations
1 and 2

𝜇 =
𝑝𝑎𝑟𝑒𝑛𝑡1 + 𝑝𝑎𝑟𝑒𝑛𝑡2

2
(1)

𝜎 =
|𝑝𝑎𝑟𝑒𝑛𝑡1 − 𝑝𝑎𝑟𝑒𝑛𝑡2|

2
(2)

This leads to a random value being selected that is likely
near or between both parents. This process is repeated for
both parameters being optimized. Additionally, the entire
process is repeated 20 times to create a new population that is
the same size as the old one with updated agent parameters.

5.6 Implementing New Generation
Once this new generation has been put through mating, the
final step is to implement it back into the game as the new
generation. This process of natural selection and mating
repeats itself enough generations have passed where the
agents are performing at a high level. This programmatically
simulates Darwin’s theory on natural selection and builds a
well-performing agent in the process. It is important to note

that each generation’s parameters are recorded for analysis
after the game has been completed.

6 Experimental Design
This project’s goal was to create a Flappy Bird agent that
was able to effectively play the game through the use of a
genetic algorithm. The source code for the game was already
written and it was important to redesign the game to support
multiple agents to play at the same time. The design process
for this project followed the basic outline described in the
approach section of this paper. Thismeant that values like the
population size, the number of members chosen by natural
selection, and the number of generations before the agent
could be considered high performing needed to be chosen
accurately. In order to implement well-running code, these
specific constants needed to be chosen effectively.

6.1 Modifying the Source Code

Figure 2. The game is played with multiple agents instead
of just one agent.

The Flappy Bird source code was only designed to account
for one agent at a time. This means that every variable that
was related to the actions of the original bird needed to be
modified so that it could handle an unspecified length of
an array of birds. Specifically, this meant accounting for
the velocity and location of multiple birds rather than just
one. This may seem relatively basic, however, it becomes a
computational challenge when the location of each agent in

6



relation to both of its optimization parameters needs to be
tracked simultaneously. This code was added into the main
while loop of the game and it is able to run smoothly behind
the scenes. This is shown in Figure 2. Once the source code
for the game was modified to allow for multiple agents, the
next step was to find the important values of the genetic
algorithm’s various steps.

6.2 Choosing a Population Size
In an ideal scenario, it would be best if the population size
was in the hundreds. This would allow for more variation
in the initial population and reduce the probability of the
agents leading into local max instead of a global max. For
example, if the initial population size is too low then the
likelihood that an agent’s inherited traits are the optimal
solution is low as the genetic diversity is also low. However,
during this project, the constraint that prevented us from
running a population size that is in the hundreds was the
computing resources available. When running a large pop-
ulation size, the game wasn’t able to process every agent’s
location accurately which lead to agents dying when they
should not have or living when they should have died. This
makes sense because there is a lot to keep track of simul-
taneously including whether an agent collided with a pipe
or the ground, the height at which an agent should flap, or
the distance to the next pipe. With this in mind, the game
seemed to run smoothly with a population size of 20 agents
which is the size used in this experiment.

6.3 Choosing a Natural Selection Constant
When choosing a natural selection constantly, the choice
determines the number of members from a population who
gets to pass their genes onto the next generation of offspring.
After runningmany different numberswe found that keeping
25% of the original population seemed like a valid solution.
This meant that with a population size of 20 only 5 agent
parameters would be used to create the next population of
offspring. This percentage wasn’t just chosen randomly. As
the number of agents allowed to mate decreases, the rate of
change between earlier generations increases. This means
that the change between generations one and two will be
more significant if only a select few individuals are able to
mate. This means that only the most fit individuals can mate
which leads to a larger shift in the population’s parameter
values. During this experiment, we tried to test a population
by keeping 10 of the 20 agents. However, this led to the
change between generations being too slow. This happened
because it allowed for some agents that performed terribly to
mate. This is why keeping the top 25% fittest agents seemed
to work the best.

6.4 Running The Algorithm
Once the basic constants for designing a genetic algorithm
were figured out the next part was to implement a working

algorithm that would make each generation of agents bet-
ter than the next. With the natural selection constant and
the population size determined. The final step was to link
the various steps of a genetic algorithm together to form a
working solution. The steps that were taken followed this
order; creating an initial population, running the population
through the modified game, applying natural selection to
the fittest agents, creating offspring, and repeating this pro-
cess. In the code base, the steps to create a new population
encompassed this new method.

getNewPopulation(scores, params, ns_const)

This method would take in the scores and input_params
to the previous population along with the natural selection
constant and apply both natural selection and mating to
form a new population. This new population is returned and
applied to the next generation of the game. This was the
design behind implementing the genetic algorithm.

6.5 Setting Up Data Analysis
The last part of the project was to analyze the performance
of the agents after they undergo the genetic algorithm. In
order to design a system that could visualize the data, the
performance and input parameters needed to be tracked
through the different generations that were being run on
the game. This was done through the use of a 3-dimensional
array which stored the score, param1, and param2 for each of
the 20 agents for each of the generations run by the program.
Once, the program had finished the data could be visualized
through a Python library called matplotlib. The various re-
sults from the program are described in the next section of
the paper.

7 Results
Once the design of the project has been implemented, the
last step of the project was to gather results. The results were
based on a run of the game that evolved over the course of
10 generations. As described in the above section, the data
collected had information about each agent. Figures 4, 5,
and 6 show the different visual representations of the data
collected. Also, in 3 you can see how the agent is able to
perform well in the game from a genetic algorithm.

7.1 Trends in the Results
There are some important trends to notice about the data
being displayed. As shown in Figure 4, the distribution of
the two optimization parameters is randomly spread out and
there is no clear distribution of the data. This makes sense as
the original population parameters were chosen randomly.
However, the graphs in Figure 5 show a different result. The
data is more centered around a specific value.
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Figure 3. An agent performing well after the evolution due
to evolution from the genetic algorithm.

Figure 4. A histogram of the 2 parameters that are being
optimized after the 1st generation.

7.2 Performance Across Multiple Generations
As the population evolves over across multiple generations,
the score of the agents should increase. The observation
from this trial regarding the score can be seen in Figure 6.
This figure was created by taking the average score of all 20
agents at every generation in the trial and using it to create
this graph. At first glance, it may seem like the evolution of

Figure 5. A histogram of the 2 parameters that are being
optimized after the 10th generation.

Figure 6. A graph showing the average score within a gen-
eration against the generations over time.

the agents is not increasing throughout every generation.
Rather, it seems to improve in the beginning generations but
then stays inconsistent in its performance. This phenomenon
will be explained more in-depth during the analysis section
of the paper.

8 Analysis
The results are interesting to look at, however, it takes some
thought to analyze how they came to be.

8.1 Optimization Parameters
As shown in Figures 4 and 5 the data starts off being dis-
tributed randomly from roughly -200 to 200 pixels in param-
eter 1 and -100 to 100 pixels in parameter 2. Additionally,
the performance with the values of these parameters is so
spread out was bad. This leads to the graph of the plot of the
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values from generation 10 in Figure 5. Notice that these val-
ues are much less spread out. The range between all the data
points is less than 1 pixel in parameter 1 and slightly greater
than 1 pixel in parameter 2. This means that an important
thing occurred throughout the trial. The agent’s parameters
were successfully optimized through the use of a genetic
algorithm. Based on the two graphs, the ranges between the
agents’ parameter values decreased significantly. This shows
that the ideal value for the first parameter which looks at the
position at which the bird should start accounting for the
next pipe is about -65 pixels. This means that in the game
the bird will start looking at the next pipe a little bit before
it crosses through the closest pipe. The data seems counter-
intuitive, yet it makes sense. Starting to analyze a pipe that
is not even the closes pipe gives it more time to set up in
the correct position after it crosses the current closest pipe.
As far as the second parameter goes, the values that seemed
to be the most effective were centered around 35-36 pixels.
This means that the height at which the bird will constantly
flap is if it is below the height of the pipe plus 35-36 pixels.
This makes sense because the bird is in a good position for
if the next pipe is lower or higher than the current position.
By crossing the pipe toward the center it is able to move in
a successful manner toward the next pipe. The process for
which these parameters came to happen through the genetic
algorithm as the better agents were able to score higher.

8.2 Performance
As shown in Figure 6. The performance of each generation
doesn’t necessarily increase. Yet, it does increase overall from
the beginning generation but not from generation to genera-
tion. This seems odd until an analysis of the agents’ gameplay.
There are some errors in this version of the game’s source
code. This error involves the rate at which the new pipes
spawn into the game. The pipes spawn slightly too fast and
as a result, they are slightly too close to each other. This can
lead to a rare case where if the pipes spawn in a specific com-
bination, the agent is never able to advance to the new pipe.
This will result in an automatic loss. This specific combina-
tion for a loss is if a pipe is low to the ground, then the second
pipe is close to the ceiling, and a third low pipe is spawned.
The agent is able to make it through the first two pipes but
the final low-lying pipe is unbeatable. For this reason, an
unlucky combination of pipes will guarantee all agents die
no matter their parameter values. This issue doesn’t affect
the change in the parameters over time because they will
always converge to the same values. However, it does hin-
der the ability to show a consistent increase in score over
multiple generations. This was shown in Figure 6 and the
average score was not consistently increasing. Based on that
graph, it could lead one to think that the genetic algorithm’s
performance is not effective. Yet, this can be disproved by
another graph displayed in Figure 7. In this graph, the initial

starting population had a higher level of randomness rang-
ing from -400 to 400 pixels for parameter 1 and -200 to 200
pixels for parameter 2. All of these ranges are double the
values from the original -200 to -200 and -100 to 100 ranges.
This leads to a more random starting population which will
hence perform worse. The goal of this was to counteract
the possibility of an unlucky pipe combination and force the
population to change more dramatically between genera-
tions. Additionally, it would only show the early generations
before the agents’ parameters had started to converge. This
scenario would help demonstrate the effectiveness of the
genetic algorithm.
Based on the graph, the score of the agents’ drastically

increased throughout the first few generations. It seems like
the parameters had already converged around the 5th and
6th generations. Nevertheless, it shows the effectiveness to
find an agent’s optimal parameters.

Figure 7. A graph showing the average score within a gen-
eration against the generations over time with a higher level
of starting randomness.

9 Conclusion
The genetic algorithm developed for the problem space of
Flappy Bird seems quite promising. Obtaining convergence
in five generations of agents shows the immense learning
speed of the algorithm and tenacity to solve problems given
adequate fitness functions. In general, the success of fitness
functions can be attributed to the choice of input parameters.
The parameters can be tailored by understanding what suc-
cess is best defined by and making that success quantifiable.

9.1 Improvements
The primary way to continue work on this agent would be
to increase simulation accuracy to have a more accurate
simulation for the game to remove the inaccessible parts of
the map. This could be done by changing the way jumps
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and gravitational acceleration such as having the nose of
the bird tilt causing the way jumps interact with gravity. By
making all environments more accurate to the original game
agents could more accurately be evaluated in all situations.
To improve the consistency of map difficulty, which can lead
to misleading data as seen in Figure 7 would be to seed the
pipe generation forcing pipes to generate in the same way
for training causing map difficulty to be constant for train-
ing. The results could still be validated after removing the
seed and testing on truly random environments. Another
potential option would be to look at alternative algorithms
discussed earlier such as the Neuroevolution of Augmenting
Topologies (NEAT). By dynamic parameter optimization, this
algorithm may not only reach optimum more quickly but do
so with less computation overhead due to the simplicity of
matrix operations needing to be performed for backpropa-
gation. In testing the genetic algorithm developed could not
run with a large number of agents and all potential input
parameters, but by changing the evolutionary mechanism
the speed could potentially be increased.

10 Contributions
• Abstract-Connor
• Problem Description- Both contributed to original re-
worked by Jonathan

• Background- Few changes to writing assignment 4
both contributed

• Approach - Connor wrote it ideas contributed by both
• Experimental Design - Connor
• Results - Connor
• Analysis - Connor
• Conclusion - Joanthan
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